NO	Торіс	
1	Protocol, Topology, Switch & Hub, Ports	
	protocols define format, order of messages sent and received among network entities, and actions taken on msg transmission, receipt.	1-8
	Topology	
	bus: popular through mid 90s all nodes in same collision domain – can collide star: prevails today - active switch in center – no collide	5-38
	routers: network-layer devices – using IP	
	Switch : layer two device – communicate using mac	532
	(both router and switch have forward table)	
	Hub : is a physical-layer device that acts on individual bits rather than	
	frames	
2	Network Interface Card (NIC) and Bandwidth	
	<u>bandwidth</u> is the maximum rate of data transfer across a given path.	
	Applications with throughput requirements such as video and audio are	
	bandwidth-sensitive applications	
	TCP/IP Layers/Model verses OSI Model	
	1. <u>Physical layer</u> - provides the electrical and mechanical connection to the network. Flow of bits.	
	2. <u>Data Link layer</u> - handles error recovery, flow control, it is the media access	
	3. Network layer - accepts outgoing messages and combines messages or	
	segments into packets, adding a header that includes routing information	
	4. Transport laver - is concerned with message integrity between the source	
	and destination (delivery)	
	5. <u>Session layer</u> - provides the control functions necessary to <u>establish</u> ,	
	request.	
	6. Presentation layer - accepts and structures the messages for the	
	application. It translates the message from one code to another if necessary.	
	7 Application layer - application programs such as word processing	
	spreadsheets, and email log the message in, interpret the request, and	
	determine what information is needed to support the request.	
	Application, Transport, Internet, Network, and Interface Layers	
	Same as above	

IP protocol, TCP, ICMP, ARP, Ethernet, Token Ring, IGMP and HTTP	
Protocols	
 <u>The Internet Protocol (IP)</u> is network layer protocol, it is the principal communications protocol in the Internet. <u>The Transmission Control Protocol (TCP)</u> is transport layer protocol <u>ICMP</u>, <u>the Internet Control Message Protocol</u> is used to control the flow of data in the network, reporting errors, and for performing diagnostics. <u>ARP</u>, <u>the Address Resolution Protocol</u>, is used to resolve an IP address to a hardware address (MAC) for final delivery of data packets to the destination <u>IGMP</u> is <u>the Internet Group Message Protocol</u>. IGMP is used when one host needs to send data to many destination hosts. This is called <u>multicasting</u>. <u>The Hypertext Transfer Protocol (HTTP)</u> is an application layer protocol for 	
distributed, collaborative, hypermedia information systems (web pages)	
Port number for FTP, HTTP, DNS, and SMTP	
FTP 20, 21 HTTP 80 DNS 53 SMTP 25	
Connection-oriented vs. connectionless-oriented	
connection-oriented transport(TCP)connectionless: UPDThree Handshakeno connection establishmentreliable data transfersimple: no connection stateflow controlsmall header sizeconnection managementno congestion control: UDP can blastbigger header sizeaway as fast as desiredunreliable data transfer	
Properties of UDP Protocol	
TCP services: reliable transport between sending and receiving process flow control: sender won't overwhelm receiver congestion control: throttle sender when network overloaded does not provide: timing, minimum throughput guarantee, security connection-oriented: setup required between client and server processes.UDP services: unreliable data transfer between sending and receiving process does not provide: reliability, flow control, congestion control, throughput guarantee, security connection-oriented: setup required between client and server processes.	
TCP data Packets	

1. <u>Version</u> – Version no. of Internet Protocol used (e.g. IPv4).	
2. Identification – If IP packet is fragmented during the transmission, all the	
fragments contain same identification number. to identify original IP packet	
they belong to.	
3. <u>Time to Live</u> – To avoid looping in the network, every packet is sent with	
some TTL value set, which tells the network how many routers (hops) this	
packet can cross. At each hop, its value is decremented by one and when	
the value reaches zero, the packet is discarded.	
4. <u>Header Checksum</u> – This field is used to keep checksum value of entire	
F Source Address - Destination Address	
6. Ontions - This is optional field, which is used if the value of IHL is greater	
than 5. These options may contain values for options such as Security	
Record Route, Time Stamp, etc.	
digital subscriber line (DSL)	
DSL stands for Digital Subscriber Line. Users get a high speed bandwidth	
connection from a phone .you can use the Internet while making phone calls.	
Ethernet, transmission rate R	
The transmission rates of Ethernet LANs can be 10 Mbps, 100 Mbps, 1 Gbps and	
10 Gbps.	
Protocol layers, service models	
Link layer services:	
flow control: pacing between adjacent sending and receiving nodes	
error detection: errors caused by signal attenuation, noise.	
receiver detects presence of errors: signals sender for retransmission or drops	
frame	
error correction: receiver identifies and corrects bit error(s)	
naif-duplex and full-duplex with half duplex, hodes at both ends of link can	
End sestence access nature links	
End systems, access networks, links	
all nontraditional internet things such as laptops, smartphones, tablets, IVs,	
gaming consoles, thermostats, nome security systems, nome appliances, watches,	
eye glasses,	
Physical media – Guided Vs Wireless	
Physical media fall into two categories: guided media and unguided media. With	
guided	
media, the waves are guided along a solid medium, such as a fiber-optic cable, a	
twisted-pair copper wire, or a coaxial cable. With unguided media, the waves	
propagate in the atmosphere and in outer space, such as in a wireless LAN or a	
digital satellite channel.	
Packet vs circuit switching	

Circuit switching is defined as the method of switching which is used for establishing a dedicated communication path between the sender and the receiver. FDM versus TDM	e e d c. o
simpler, no call setup excessive congestion possible: packed delay and loss protocols needed for reliable data transfer, congestion control	r n
ISP. IXP	
 An Internet service provider (ISP) is an organization that provides a myriad of services for accessing, using, or participating in the Internet. An Internet exchange point (IX or IXP) is the physical infrastructure through whice Internet service providers (ISPs) and content delivery networks (CDNs) exchange Internet traffic among their networks (autonomous systems) and peer together 	f h e
Four sources of packet delay	
 <u>nodal processing</u> : check bit errors and determine output link . <u>queueing delay</u>: time waiting at output link for transmission depends on congestion level of router. <u>transmission delay</u>: L: packet length (bits) R: link bandwidth (bps) <u>propagation delay</u>: d: length of physical link s: propagation speed in medium 	
Caravan analogy	
assume that whenever the first car of the caravan arrives at a tollbooth, it must wait at the entrance to the tollbooth until all of the other cars in its caravan hav arrived, and lined up behind it before being serviced at the toll booth. (That is, th entire caravan must be stored at the tollbooth before the first car in the carava can pay its toll and begin driving towards the next tollbooth)	t e n
Packet loss, Throughput	
<u>Throughput</u> refers to how much data can be transferred from one location t another in a given amount of time.	0
Network Congestion	
Just like in road congestion, Network Congestion occurs when a network is not abl to adequately handle the traffic flowing through it. (temporary)	e
Encapsulation	

During encapsulation, each layer builds a <u>protocol data unit</u> (PDU) by adding a header (and sometimes trailer) containing control information to the PDU from the layer above		
Application Structure: Client/Server		
server:	clients:	
always-on host	communicate with server	
permanent IP address	may be intermittently connected	
data centers for scaling	may have dynamic IP addresses	
ARO	do not communicate directly with each other	
P2P		
no always-on server	E	
arbitrary end systems directly communicate		
peers request service from other pee	ers, provide service in return to	
other peers		
self scalability – new peers bring new service capacity, as well as new		
service demands		
peers are intermittently connected and change IP addresses		
complex management		
principles of network applications		
run on (different) end systems		
communicate over network		
e.g., web server software communicates	with browser software	
no need to write software for network-core devices		
network-core devices do not run user applications applications on end systems, allows for rapid app development, propagation		
applications of end systems allows for rapid app development, propagation		
Web and HTTP Persistent HTTP		
persistent HTTP	non-persistent HTTP	
multiple objects can be sent over single	at most one object sent over TCP	
TCP connection between client, server	connection	
server leaves connection open after	connection then closed	
sending response	downloading multiple objects required	
subsequent HTTP messages between	multiple connections	
connection	OS overhead for each TCP connection	
client sends requests as soon as it	browsers often open parallel TCP	
encounters a referenced object	connections to fetch referenced objects	
as little as one RTT for all the referenced	, , , , , , , , , , , , , , , , , , ,	
objects		
HTTP request message and Method	types	

two types of HTTP messages: request, re	sponse	
<u>URL method:</u>		
uses GET method		
input is uploaded in URL field of request l	ine.	
POST method:		
web page often includes form input		
 input is uploaded to server in entity body	,	
 Web caching		
satisfy client request without involving o	rigin server.	
why Web caching?	U K	
reduce response time for client request	· N	
 reduce traffic on an access link		
electronic mail and its components;	SMTP, POP3, IMAP	
SMTP: simple message transfer protocol		
POP: post office protocol		
IMAP: internet message access		
 DNS and its services		
DNS: domain name system.		
DNS services		
1. hostname to IP address translatio		
2. host aliasing		
3. canonical, alias names		
4. mail server allasing		
5. load distribution		
6. replicated web servers: many iP a	iddresses correspond to one name	
Above		
Above		
transport-layer services vs network	layer	
 multiplexing and demultiplexing		
multiplexing at sender	demultiplexing at receiver	
handle data from multiple	use header info to deliver	
sockets, add transport header	received segments to correct	
FDM – TDM	socket	
 connectionless transport: UDP		
Above		
principles of reliable data transfer (1	rdt)	
important in application, transport, link la	ayers	
incrementally develop sender	· ·	
use finite state machines (FSM) to specif	y sender, receiver	
Segments		

breaking the application messages into smaller chunks and adding a transport-	
layer header to each chunk to create the transport-layer segment	
Pipelined protocols	
Same as rdt	
*consider only unidirectional data transfer	
 Router architecture	
1. Input ports. Receiving data from senders.	
2. Switching fabric connects the router's input ports to its output ports	
3. Output ports store packets received from the switching fabric and transmits	
these packets on the outgoing link	
4. Routing processor. The routing processor performs control-plane functions.	
In traditional routers, it executes the routing	
 Two key network-layer functions	
1. accepts outgoing messages and combines messages or <u>segments</u> into	
packets (addressing)	
2. adding a neader that includes <u>routing</u> information (routing)	
Forwaraing ana Routing	
forwarding: move packets from router's input to appropriate router output	
routing: determines source-destination route taken by packets	
routing algorithm	
goal is to determine good paths (equivalently, routes), from senders to receivers,	
through the network of routers. Typically, a "good" path is one that has the least	
<u>cost</u> .	
 forwarding table	
A router forwards a packet by examining the value of one or more fields in the	
arriving packet's header, and then using these header values to index into its	
 forwarding table	
 Switching fabrics and its three types	
1. <u>Switching via memory</u> . The simplest, earliest routers were traditional	
computers, with switching between input and output ports being done	
under direct control of the CPU (routing processor). Input and output ports	
Switching via a bus in this approach an input part transfers a packet	
2. <u>Switching via a bus</u> . In this approach, an input port transfers a packet directly to the output port over a shared bus, without intervention by the	
routing processor	
3. Switching via an interconnection network One way to overcome the	
bandwidth limitation of a single, shared bus is to use a more sophisticated	
interconnection network	
IP datagram format	
32 bit above	
Switching via interconnection network	
0	

Above	
CIDR: Classless InterDomain Routing	
Classless Inter-Domain Routing is a method for allocating IP addresses and for IP routing. Its goal was to slow the growth of routing tables on routers across the Internet, and to help slow the rapid exhaustion of IPv4 addresses.	
DHCP: Dynamic Host Configuration Protocol	
the Dynamic Host Configuration Protocol DHCP allows a host to obtain (be allocated) an IP address automatically	
DHCP client-server scenario	
 DHCP server <u>discovery</u>. The first task of a newly arriving host is to find a DHCP server with which to interact. DHCP server <u>offer(s)</u>. A DHCP server receiving a DHCP discover message responds to the client with IP. DHCP <u>request</u>. The newly arriving client will choose from among one or more server offers DHCP <u>ACK</u>. The server responds to the DHCP request message with a DHCP ACK message, 	
Framing, link access	
 Framing. Almost all link-layer protocols encapsulate each network-layer datagram within a link-layer frame before transmission over the link. A frame consists of a data field, in which the network-layer datagram is inserted, and a number of header fields. The structure of the frame is specified by the link-layer protocol. Link access. A medium access control (MAC) protocol specifies the rules by which a frame is transmitted onto the link. For point-to-point links that have a single sender at one end of the link and a single receiver at the other end of the link, the MAC protocol is simple (or nonexistent)—the sender can send a frame whenever the link is idle 	
Node and datagram	
hosts and routers: nodes	
Link layer services	
 flow control: pacing between adjacent sending and receiving nodes error detection: errors caused by signal attenuation, noise. receiver detects presence of errors: signals sender for retransmission or drops frame error correction: receiver identifies and corrects bit error(s) without resorting to retransmission half-duplex and full-duplex 	
Error detection (EDC)	
At the sending node, data, D, to be protected against bit errors is augmented with error-detection and -correction bits	
Single and two-dimensional bit parity checking	

Single parity check: a single bit is appended to the end of each frame the data portion of the frame has odd number of 1's.	e, the bit is 1 if
Two Dimensional Parity can detect as well as correct one or more bit or more bit error takes place then the receiver will receive the me changed parity bit.	errors. If a one ssage with the
Checksum,	
A checksum is a small-sized block of data derived from another block for the purpose of detecting errors that may have been introdu transmission or storage. Collision	of digital data ced during its
collision is the situation that occurs when two or more deman simultaneously on equipment that can handle only one at any given	nds are made instant
point-to-point and <i>broadcast access links</i> protocols	
point-to-point link consists of a single sender at one end of the link a receiver at the other end of the link. broadcast link, can have multiple sending and receiving nodes all co the same, single, shared broadcast channel. The term broadcast is us because when any one node transmits a frame, the channel broadcast and each of the other nodes receives a copy	and a single onnected to sed here asts the frame
Three broad classes of MAC protocols	
 MAC three broad classes: 1. channel partitioning: divide channel into smaller "pieces" (tir frequency, code) allocate piece to node for exclusive use 2. random access: channel not divided, allow collisions "recover collisions 3. "taking turns": nodes take turns, but nodes with more to sen longer turns 	me slots, r" from Id can take
CSMA (carrier sense multiple access) & CSMA/CD	
CSMA (carrier sense multiple access). Listen before transmitting. CSMA/CD 1- Taking turns 2- Polling request 3- Token pass	
Channel partitioning MAC protocols: TDMA and FDMA	
FDMA: frequency division multiple access. Divide the media in bands TDMA: time division multiple access. Divide the transmission usin (send in round)	s like radio ng time frame
Taking turns" MAC protocols	

Final exam revision for Fundamental of Network – course IETC1310 By Ahmed Farouk – 77275783

Above	
Polling	
the polling protocol. The polling protocol requires one of the nodes to be designated as a master node. The master node polls each of the nodes in a round-robin fashion. In particular, the master node first sends a message to node 1, saying that it (node 1) can transmit up to some maximum number of frames	

